Covariance matrix and transfer function of dynamic generalized linear models
نویسندگان
چکیده
منابع مشابه
Bayes Linear Covariance Matrix Adjustment for Multivariate Dynamic Linear Models
A methodology is developed for the Bayes linear adjustment of the covariance matrices underlying a multivariate constant time series dynamic linear model. The covariance matrices are embedded in a distribution-free inner-product space of matrix objects which facilitates such adjustment. This approach helps to make the analysis simple, tractable and robust. To illustrate the methods, a simple mo...
متن کاملDynamic Generalized Linear Models
Dynamic Generalized Linear Models are generalizations of the Generalized Linear Models when the observations are time series and the parameters are allowed to vary through the time. They have been increasingly used in diierent areas such as epidemiology, econometrics and marketing. Here we make an overview of the diierent statistical methodolo-gies that have been proposed to deal with these mod...
متن کاملIdentifiability of Dynamic Stochastic General Equilibrium Models with Covariance Restrictions
This article is concerned with identification problem of parameters of Dynamic Stochastic General Equilibrium Models with emphasis on structural constraints, so that the number of observable variables is equal to the number of exogenous variables. We derived a set of identifiability conditions and suggested a procedure for a thorough analysis of identification at each point in the parameters sp...
متن کاملBayesian Modeling of Random Effects Covariance Matrix for Generalized Linear Mixed Models
Generalized linear mixed models(GLMMs) are frequently used for the analysis of longitudinal categorical data when the subject-specific effects is of interest. In GLMMs, the structure of the random effects covariance matrix is important for the estimation of fixed effects and to explain subject and time variations. The estimation of the matrix is not simple because of the high dimension and the ...
متن کاملBayesian covariance selection in generalized linear mixed models.
The generalized linear mixed model (GLMM), which extends the generalized linear model (GLM) to incorporate random effects characterizing heterogeneity among subjects, is widely used in analyzing correlated and longitudinal data. Although there is often interest in identifying the subset of predictors that have random effects, random effects selection can be challenging, particularly when outcom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2016
ISSN: 0377-0427
DOI: 10.1016/j.cam.2015.10.015